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Abstract

This document describes the Master’s Thesis formart for the theses carried out
at the Department of Computer Science, Lund University.

Your abstract should capture, in English, the whole thesis with focus on the prob-
lem and solution in 150 words. It should be placed on a separate right-hand page,
with an additional Iem margin on both left and right. Avoid acronyms, footnotes,
and references in the abstract if possible.

Leave a 2cm vertical space after the abstract and provide a few keywords relevant
for your report. Use five to six words, of which at most two should be from the
title.
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Chapter 1

Evaluation

In this chapter, we present the evaluation of the models introduced in the previous chaprer.
The chapter is organized as follows. In Section 1.1, we report the accuracy results for the deep
convolutional models, with the performance of the 4Conv, 10Conv, and 20Conv architectures
discussed in Section 1.1.1.

We then evaluate the Cifarl0 model in Section 1.1.2, followed by the results for the MAGIC
gamma model in Section 1.1.3.

1.1 Performance in Accuracy

In chis section, we present results comparing ONNX mixed-precision models with their cor-
responding fully integer TOSA models. For all experiments, the quantized ONNX model is
used as the baseline for accuracy. A positive difference therefore indicates that the TOSA
model achieves higher accuracy than the corresponding ONNX model, while a negative dif-
ference indicates a decrease in accuracy.

1.1.1 Deep model

For the deep convolutional models, three different network depths were evaluated. The re-
sults are summarized in Table 1.1.




1. EVALUATION

Table 1.1: The results for mixed precision and integer models of dif-
ferent depths. The models were evaluated on a test set of 9,984 im-
ages

Model ONNX accuracy TOSA accuracy Difference

4Conv 0.6523 0.6533 +0.0010
10Conv 0.6016 0.5987 -0.0029
20Conv 0.5233 0.5266 +0.0033

Table 1.1 reports the model name, the accuracy of the quantized ONNX QDQ-model, the
accuracy of the corresponding TOSA full integer model, and the difference between the two.
The results indicate that increasing model depth does not have a negative impact on the
accuracy of the TOSA models relative to the ONNX models. Instead, the accuracies of the
two representations closely track each other across all tested depths, even though overall per-
formance decreases for deeper models. This suggests that the quantization error introduced
when converting from mixed-precision to a fully integer representation does not accumulate
in a way that significantly affects model accuracy.

Beyond comparing predicted class labels, it is also informative to examine the numerical
outputs of the models directly. Such a comparison can provide additional insight into the
differences between the two representations.

1.1.1.1 4Conv

Histogram of Differences (TOSA — ONNX)
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Difference in output vector
Figure 1.1: For the 4Conv model. Shows the size of the numerical

difference in the output vector between ONNX mixed precision and

TOSA integer model.

Figure 1.1 illustrates the numerical differences between the output vectors produced by the
ONNX and TOSA models. Although the classification accuracy of the two models is nearly
identical, the figure shows that there are small numerical discrepancies in their output values.
The x-axis represents the numerical difference between corresponding elements in the output
vectors, while the y-axis indicates the count of each difference. Negative values indicate
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1.1 PERFORMANCE IN ACCURACY

cases where the ONNX QDQ-model produces a larger output value, whereas positive values
indicate cases where the TOSA integer model produces a 1arger value.

From this figure, we conclude that the two models are not numerically identical at the output
level. However, despite these differences in the output vectors, the predicted class often
remains unchanged. This explains why the observed differences in accuracy are minimal,
even though small numerical deviations are present.

Confusion matrix for FourConvThreeBlocks

airplane 986 g 1 4 8 0 0 0 9 2

automobile - 2 972 0 0 1 0 0 0 3] 6

bird - 4 5 0 1 0

cat - 0 3 ab 2 3]
<
3

I deer - 2 3 1 1 1
a
o
S
°
2

L dog - 0 0 2 0 0
o
<
T

frog - 0 1 4 7 6 1 0 0 0

horse - 0 0 1 1 2 4 0 0 0

ship - 6 4 4 0 1 0 1 0 1169 2

truck - 1 2 0 0 1 0 0 1 3 867
! ! J ! ! ! ! ! '
airplane  automobile bird cat deer dog frog horse ship truck

Predicted class ONNX mixed precision

Figure 1.2: Confusion matrix between TOSA integer model and
ONNX mixed precision model for the 4Conv model

Figure 1.2 shows the confusion matrix comparing the predictions of the 4Conv ONNX QDQ-
model and the corresponding TOSA model.

A confusion matrix is a representation of how well two different classification models agree
with each other. The confusion matrix is interpreted as follows: The diagona] means that the
two models predicted the same class, they are in agreement. The offdiagonals means that the
models did not predict the same class and their respective predictions can be read from the
labels on the row/column:s.

The figure indicates that the predictions of the two models differ for a small subset of the
inputs. From this result, we can conclude that although the models sometimes produce differ-
ent predictions, this does not imply that one model is correct while the other is incorrect. In
some cases, both models may misclassify the same input burt assign it to different incorrect
classes. This observation further supports the conclusion that small numerical differences
between the models do not necessarily translate into meaningful differences in overall clas-
sification performance.




1. EVALUATION

1.1.1.2 10Conv

Histogram of Differences (TOSA — ONNX)
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Figure 1.3: Shows the numerical difference in the output vector be-
tween ONNX mixed precision and TOSA model.

Figure 1.3 presents a histogram of the numerical differences between the outputs of the
10Conv ONNX QDQ-model and the corresponding TOSA integer model. The figure illus-
trates the degree of similarity between the two models in terms of numerical behavior, but it
does not directly reflect their classification accuracy. The x-axis shows the size of the numer-
ical difference between the model outputs, while the y-axis indicates the count with which
each difference occurs.

The results indicate that, in some cases, there are noticeable numerical differences between
the two models, with differences occasionally reaching values as large as 7. While the distri-
bution appears approximately symmetric, it is not perfectly so. Instead, the differences are
centered around zero and approximately normally distributed, which explains the observed
symmetry.

10



1.1 PERFORMANCE IN ACCURACY

Confusion matrix for TenConvThreeBlocks
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Figure 1.4: Confusion matrix between TOSA integer model and
ONNX mixed precision model for the 10Conv model

Figure 1.4 shows the confusion matrix for the 10Conv model. The purpose of this figure is
to illustrate how the predictions of the ONNX QDQ-model and the TOSA integer model
compare across the 9,984 test images. Each row corresponds to the class predicted by the
TOSA model, while each column corresponds to the class predicted by the ONNX model.
Each entry in the matrix therefore represents the number of samples for which the two models
produced a specific combination of predictions.

The diagonal elements indicate the number of samples for which both models predicted the
same class, which is the desired outcome. The relatively scrong diagonal dominance observed
in the matrix indicates a high level of agreement between the two models, despite the small
numerical differences observed in their outputs.
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1. EVALUATION

1.1.1.3 20Conv

Histogram of Differences (TOSA — ONNX)
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Figure 1.5: Shows the numerical difference in the output vector be-
tween ONNX mixed precision and TOSA model.

Figure 1.5 shows the numerical differences between the output vectors of the 20Conv ONNX
QDQ-model and the corresponding TOSA integer model. The x-axis represents the mag-
nitude of the numerical difference, while the y-axis shows the frequency with which each
difference occurs. Positive values indicate cases where the TOSA model produces a larger
output value, whereas negative values indicate cases where the ONNX QDQ-model produces
a larger value.

The figure indicates that, for a small subset of outputs, the numerical differences are rela-
tively large. This suggests that some degree of error propagation may occur in deeper mod-
cls. However, these numerical deviations do not imply that the TOSA model performs worse
than the ONNX model in terms of classification accuracy. Rather, they reflect differences in
the output vectors that do not necessarily affect the final predicted class.

12



1.1 PERFORMANCE IN ACCURACY
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Figure 1.6: Confusion matrix between TOSA integer model and
ONNX mixed precision model for the 20Conv model

Figure 1.6 displays the confusion matrix for the 20Conv model. The figure illustrates the class
predictions produced by the ONNX QDQ-model and the corresponding integer model. It
can be observed that the predictions differ for a non-negligible number of samples, indicating
that the two models occasionally assign different classes to the same input. This does however
not indicate that one model is better then the other, both models might predict different

incorrect classes.

1.1.2 Cifar model

The accuracy of the CIFAR-10 model is presented in Table 1.2.

Table 1.2: Results of the model intended for the Cifar data set. It
was tested on a imageset of 9,984 images

Model

ONNX accuracy TOSA accuracy Difference

Cifar model

0.8056

0.8058

+0.002

Table 1.2 presents the accuracy comparison between the ONNX QDQ-model and the corre-
sponding TOSA model for the Cifarl0 model. The resules show that the proposed translation
approach also performs well for models that are speciﬁcally designed to achieve high accuracy
on the target task, with only negligible differences between the two representations.

13



1. EVALUATION

Histogram of Differences (TOSA — ONNX)
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Figure 1.7: Shows the numerical difference in the output vector be-
tween ONNX mixed precision and TOSA model.

Figure 1.7 shows a numerical comparison between the outputs of the ONNX QDQ-model
and the corresponding TOSA model. The figure illustrates the magnitude of the numerical
differences in the output vectors produced by the two models. The x-axis represents the size
of the difference, while the y-axis indicates the frequency with which each difference occurs.
Negative values correspond to cases where the TOSA model produces a larger output value,
whereas positive values indicate cases where the ONNX model produces a larger value.

A notable observation from this figure is that the majority of elements in the output vectors
are identical between the two models. When differences do occur, their magnitude is at
most 1. This indicates that the two models exhibit very similar numerical behavior.
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1.2 EVALUATION OF INTEGER SOFTMAX METHODS

Confusion matrix for GoodCifarModel
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Figure 1.8: Confusion matrix between TOSA integer model and
ONNX mixed presicion model for Cifarl0 model

Figure 1.8 presents the confusion matrix comparing the predicted classes of the Cifarl0 TOSA
integer model and the corresponding ONNX QDQ-model. The figure shows that the two
models produce different predictions for only a small number of samples, indicating a high
level of agreement between their classification outputs.

1.1.3 MAGIC gamma telescope

The accuracy for the model trained on the MAGIC gamma telescope dataset presented in
Table 1.3.

Table 1.3: Results of the model intended for the MAGIC gamma

data set. It was tested on a imageset of 9,984 images

Model ONNX accuracy TOSA accuracy Difference
MAGIC Gamma 0.8616 0.8616 0.000

Table 1.3 presents the accuracy comparison for the MAGIC gamma model. The results show
that the translation approach performs well for continuous-valued data, with both the ONNX
QDQ-model and the TOSA model achieving identical accuracy.

1.2 Evaluation of Integer Softmax Methods

This section presents our experimental evaluation of integer softmax approximations. We
evaluate six implementations: two single-table baselines (LUT-i8 and LUT-i16), polynomial

15



1. EVALUATION
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(a) Histogram for 4Conv
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(b) Histogram for 10Conv
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(¢) Histogram for 20Conv

Figure 1.9: Shows the size of the numerical difference in the output
vector between ONNX mixed precision and TOSA integer model

approximations of varying degrees, and four DIGmax variants (DIGmax-i8-Log, DIGmax-
i8-Linear, DIGmax-i16-Log, DIGmax-il6-Linear).
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1.2 EVALUATION OF INTEGER SOFTMAX METHODS

1.2.1 Implementation Overview

Representing softmax as a set of integer-only operations is not straightforward. We are aware
of three general approaches: Taylor series approximations, lookup tables with interpolation
(linear or polynomial), and power-of-two decomposition methods. These approaches have
also been combined in various ways, as discussed in Section ??. The two most common ap-
proaches are Taylor series and lookup tables with linear interpolation.

1.2.1.1 Single Lookup Table with Linear Interpolation (LUT-i16)

The LUT-i16 method uses a 513-entry lookup table with 7-bit linear interpolation, corre-
sponding to the TOSA TABLE operator. While this approach works well in many cases, it

has several limitations:

1. Varying precision: The approximation error depends on the distance from table en-
tries. Figure 110 illustrates how the error exhibits a wave-like pattern. This occurs
because the exponential function is approximated using linear segments between ta-
ble entries. The relative error follows a repeating pattern regardless of the absolute
value, since softmax normalization makes only relative differences matter.

2. Fixed range coverage: The table only covers a predetermined range [0, Xmax]. There is
a trade-off: covering a wider range reduces precision, while covering a narrower range
causes clipping for out-of-range inputs. In our experiments, setting Xmax = 20 caused
the model to produce garbage output because a small number of logits fell outside this
range and were handled incorrectly.

3. Computational overhead: While linear interpolation itself is inexpensive, it must be
performed for every input element, adding to the total computation.

1.2.1.2 Polynomial Approximation

We also evaluated po]ynomia] approximations using truncated Tay]or series of degrees 2, 3,
and 4. Figure 1.11 shows the approximation error for these methods.

The polynomial approach requires no lookup tables, but our experiments showed it is only
accurate over a narrow range. Additionally, the computational cost scales with both the num-
ber of input elements and the polynomial degree. We concluded that standalone polynomial
approximation is not practical for softmax. However, polynomials could potentially replace
linear interpolation within a LUT-i16 scheme if the additional computation is acceprable.

1.2.1.3 DIGmax Methods

Our DIGmax approach addresses the range-precision trade-off by maintaining multiple lookup
tables and selecting the appropriate one at runtime. We implemented four variants combin-
ing two table distributions (linear and logarithmic) with two output precisions (int8 and
incl6).

17
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Figure 1.10: Linecar interpo]ation error pattern for LUT-i16. The
wave-like structure arises from approximating the exponential curve
with linear segments between table entries. The error is smallest at
table entries and largest at midpoints between entries.

1.2.2

We evaluate each method on synthetic test data to characterize their approximation behavior.

Theoretical Evaluation: Uniform Test Points

For each configuration, we sample N = 10,000 uniformly spaced points across the input
range and compute both the function approximation and the relative error compared to the
true exponential.

Table 1.4: Theoretical experiment configurations

Xmax N Purpose Formulation

8 | 10000 | Small range, high precision expected exp(x) on [0, 8]

8 10000 | Small range, high precision expected exp(x) on [-8,0]
32 | 10000 | Medium range, typical attention patterns | exp(x) on [0, 32]
32 | 10000 | Medium range, typical attention patterns | exp(x) on [-32,0]
128 | 10000 | Large range, covering almost all logits exp(x) on [0, 128]
128 | 10000 | Large range, covering almost all logits exp(x) on [—128, 0]

Each figure shows two panels: the upper panel displays the function approximation f(x) com-
pared to the true exp(x), while the lower panel shows the relative error on a logarithmic scale.
We present results for both positive ranges [0, Xmax ] and negative ranges [=Xmax, 0]. Alchough
mathematically equivalent, these formulations produce different quantization behavior: pos-
itive ranges yield large output values that stress the upper limits of integer representation,
while negative ranges yield small output values that underflow to zero. Since softmax uses the
shifted formulation where inputs lie in [-r, 0], the negative range results are more directly
applicable to attention computations.

18



1.2 EVALUATION OF INTEGER SOFTMAX METHODS
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Figure 1.11: Approximation error for polynomial methods of vary-
ing degrees. Po]ynomials provide good accuracy orlly within a nar-
row range around the expansion point, with error growing rapidly
outside this region.

The key phenomena visible in these results are:

1. Zero-value regions: Single-table methods (LUT-18, LUT-i16) produce zero outputs be-
yond their effective range, visible as flat regions in the upper panel and very high rel-
ative error in the lower panel.

2. Sawtooth error patterns: DIGmax methods exhibit periodic error spikes at table bound-
aries where the selected table changes, followed by decreasing error within each table’s
range.

3. Precision hierarchy: Methods using int16 tables with interpolation consistently achieve
lower baseline error than their int8 counterparts. By definition, the minimum resolu-
tion for int8 tables is Xpa/28, while for int16 with 7-bit interpolation it is Xiax/2%.

4. Range-precision trade-off: As X, increases, sing]e—table methods must spread their
limited precision across a wider range, degrading accuracy everywhere.

1.2.2.1 Small Range: x. =8

For the small range xmax = 8, all methods perform reasonably well. In the positive formula-
tion (Figure 1.12), all methods track the exponential curve. LUT-18 exhibits visible stepping
due to its 8-bit output resolution, while LUT-i16 and DIGmax-i16 variants achieve smooth
approximations.

In the negative formulation (Figure 1.13), LUT-i8 saturates to a constant value for x < =2 be-
cause exp(—2) = 0.135 already approaches the resolution limit of 8-bit output. The charac-
teristic wave pattern of LUT-i16’s linear interpolation error is clearly visible. DIGmax meth-
ods show their sawtooth pattern at table boundaries but maintain bounded error throughout.

1.2.2.2 Medium Range: x;.x = 32

At Xmax = 32, the limitations of single-table methods become apparent. In the positive
formulation (Figure 1.14), both LUT-i8 and LUT-i16 saturate and cannot represent the large
values of exp(x) for x > 5. Their relative error reaches 100% (shown as 10? on the log scale)
for most of the range.

19



1. EVALUATION

DIGmax-images/softmax_exp_x_range O_to_8 positive.png

Figure 1.12: Function approximation and relative error for exp(x) on
[0, 8]. All methods track the exponential curve well. LUT-8 shows
step-like behavior due to limited output resolution. DIGmax-i16
variants achieve the lowest error.

In the negative formulation (Figure 1.15), the zero-value regions are clearly visible: LUT-i8
outputs zero for approximately x < =5, and LUT-i16 for x < —16. DIGmax-i8-Log exhibits
an interesting artifact: periodic spikes where the output jumps to 1.0 at table boundaries,
causing relative error spikes up to 10" This occurs because the coarse logarithmic table
selection occasionally maps inputs to an inappropriate table. DIGmax-i16 variants maintain
error below 10% across nearly the entire range.

1.2.2.3 Large Range: x;., = 128

The large range Xmax = 128 represents an extreme stress test. In the positive formulation
(Figure 1.16), single-table methods saturate almost immediately. DIGmax methods continue
to approximate the function, though DIGmax-i8 variants show visible stepping and periodic
error spikes.

In the negative formulation (Figure 1.17), the limitations become severe. LUT-i8 and LUT-
i16 output zero for the vast majority of the range. DIGmax-i8-Linear shows relative error
growing exponentially (linearly on the log scale), reaching 10°7 at x = —128. This occurs

20



1.2 EVALUATION OF INTEGER SOFTMAX METHODS

DIGmax-images/softmax_exp_neg x_range neg 8 to_0_negative.png

Figure 1.13: Function approximation and relative error for exp(x)
on [—8,0]. LUT-i8 shows early saturation to a constant value. The
wave-like error pattern of LUT-i16 from linear interpolation is vis-
ible. DIGmax methods maintain consistent error across the range.

because the quantization error compounds: small absolute errors become enormous relative
errors when the true value is exp(=128) = 1076

DIGmax-il6 variants perform best, maintaining relative error around 1-10% across most of
the range. The logarithmic variant (DIGmax-i16-Log) shows slightly higher but more consis-
tent error, while the linear variant (DIGmax-i16-Linear) achieves lower error in some regions
but with more variation.

1.2.3 Key Observations

Several conclusions emerge from this theoretical evaluation:

1. Range coverage matters more than precision: A method that covers the full input
range with moderate precision outperforms one with high precision over a limited
range. Missing even a few outlier logits can corrupt the entire attention computation.

2. Int16 with interpolation provides substantial benefits: The 23-bit effective precision
(216*+7 distinct output levels) of int16 tables extends the effective range from approxi-

21



1. EVALUATION

DIGmax-images/softmax_exp_x_range O_to_32_positive.png

Figure 1.14: Function approximation and relative error for exp(x) on
[0,32]. LUT-i8 and LUT-i16 saturate early. DIGmax methods con-
tinue to approximate the exponential across the full range, though
with periodic error spikes at table boundaries.

mately 5.5 units (int8) to 16 units, reducing zero-value regions significantly.

3. DIGmax adapts to input distributions: By selecting tables matched to the actual input
range, DIGmax avoids the precision loss that single-table methods incur when designed
for worst-case ranges.

4. Logarithmic distribution trades precision for robustness: DIGmax-Log variants use
only 6 tables compared to 256 for linear distribution, reducing memory by 42Xx. The

coarser granularity causes occasional larger errors at table boundaries but provides
consistent behavior across all ranges.

1.3 22222 Evaluation of Integer-only Soft-
max methods, including DIGmax

When it comes to representing Softmax as a set of integer-only operations its not trivial what
is the best way.
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DIGmax-images/softmax_exp_neg x_range neg 32 to_O_negatfive.png

Figure 1.15: Function approximation and relative error for exp(x)
on [-32,0]. Single-table methods show large zero-value regions.
DIGmax-i8-Log shows periodic spikes to exp(x) = 1 at table bound-
aries. DIGmax-il6 variants maintain the best accuracy.

There are three ways which we are aware of, trying to approximate it using a taylor series,
a big lookup table with interpolation, both linear and using polynomials, to not become to
memory intensive, and a power of 2 solution where you try to match things to a power of
two. Later people have combined these as well into different matters, see background section
about this.

The two most common ones are taylor series based approach and big lookup with linear
interpolation.

Explained more in detail in background ??.

We implemented one sanity check that would be a randomizer for the softmax logits, that
should represent and help find what randomized numerical error we can get and still have a
good result. Here we had a normalized

We implemented one straight forward LUT116, the big option of a lookup table in tosa using
linear interpolation. The lookup table with linear interpolation is good. However it has some

drawbacks.
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DIGmax-images/softmax_exp_x_range O_to_128 positive.png

Figure 1.16: Function approximation and relative error for exp(x)
on [0, 128]. Single-table methods fail entirely beyond small x. Only
DIGmax methods can approximate the exponential across this ex-
treme range.

. The precision varies depending on how close to an entry it is. As we try to illustrate

in this image is how the error behaves in a pattern of waves. This comes from that
we inside these bubbles are trying to represent an exponential function using linear
interpolation. Which is a bit naive. Works for small values, worse for large, however
since we in softmax later normalize, we can just look at the relative error and we see
then this beautiful pattern of how the error no matter size has a standardized wave
shape it repeats. THere are a few potential solutins for this, but the all come at a cose.
You could have a taylor approximation between each point. In our case we are mostly
interested in values close to 0, with normal distribution around 0. so You could also
try to do optimizations where it matters the most, to decrease relative error around 0.

. All values must be moved from a quantized state to a fixed-point integer state. Which

is computational intensive.

. The linear interpolation is not that expensive, however it adds to it, especially since

you have to do that with every single entry.

. It only covers a certain scope on the real axis. It only covers what you tell it to cover,
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DIGmax-images/softmax_exp_neg x_range neg 128 to_0_negative.png

Figure 1.17: Function approximation and relative error for exp(x) on
[-128,0]. This extreme range causes all methods except DIGmax-
i16 variants to exhibit large error regions. DIGmax-i8-Linear shows
error growing linearly on the log scale (exponentially in absolute
terms).

and it’s a tradeof between the more you want to cover, the more precision you lose.
Interesting enough when we tested this, it caused the LUTi16 (lookup table linear
interpolation 16) to completely die and fail because, even though only a few logits
where outside, it destroyed the full model and we only got garbage results. Mentioning
this with an image a bit lower.

We implemented one polynomial approximation with different degrees.

Here we saw that these where good for a very short range. They are also very computational
expensive. Therefore we concluded this approach not useful at all. However potentially as a
replacement in the linear interpolation for LUTi16, however, only if you can afford the extra
compute.

And finally, our DIGmax approach, which we conducted some off-track from TOSA spec to
test different granularitites.

So we can began with studying
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We saw many interesting things here regarding what seems to take effect.

Some interesting things we saw on the way to get there was for instance, for real worlds
logits. Missing a few attention-logits destroys the full model. Therefore, making sure you
can handle the full range is more important than precision sometimes. For instance we saw
that with a xmax set to 20, so only handling range 0-20 with a LUTil16. For instance here is
a table showing what happens here. We see that even using only 1 table of DIGmax where
you quantize it down, aka, quantizing down to same scale becomes better than having a fixed
range and trying to put it there. you see how the performance of a standard DIGmax perform
better. This is because of xmax 20 however.

Just comparing the different implemntations on a straight line there are some differences in

accuracy. Like LUTi16 has output [0, 2**31-1] while normal LUTi8 has [0, 2**7-1]
So here we have a comparison between some different configurations.

We see that as expected all version that uses the i16-tables perform better. Per definition is the
i8 tables lowest accuaracy xmax/2**8, and for 116 xmax/2**23 (16+7 interpolated), meaning
a much higher resolution for the output

1.3.1 Evaluation of full integer translation of trans-
former

When testing the full integer pipeline there are multiple things to have in mind.

The transformer have evolved a lot during the last few years, and it’sa quite broad term in the
sense on how to implement it. As menitoned in the sections above, we have multiple blocks
inside a transformer, each block consist of a feed forward network and an attention layer,
this attention layer consist of multiple heads of attention-heads (this is for parallellization
and compute speed up reasons we want to have multiple heads). We have two things here,
depth, how many blocks, and width, how many attention-heads, even though this may be less
interesting.

1.3.1.1 Single-layer contribution of attention

So first we test for one single layer, what the contribution of error is.
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1. EVALUATION

Here we can see the contribution for each step in the process we described, we see that the
big jump is when we perfbrm the softmax that we get the degragation.

1.3.1.2 Error propagation through multiple layers of attention

After knowing the expected effect of one single layer we of course want to know how this
ropagates. It is not always obvious how. However, we can try to measure it by scudyin
propag y ) y y ymg

mean error and standard deviation of it.

From running tests we also see that, this is very noisy and hard to tell.
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Chapter 2

Discussion

This chapter examines the significance of the experimental results, addresses the research
questions posed in the introduction, and explores the broader implications of this work for
edge deployment of neural networks. We structure the discussion around two main themes:
the CNN translation in Section 2.1 and the integer softmax approach for transformers in
Section 2.2.

2.1 CNN Translation Pipeline

The results presented in Section 1.1 demonstrate that translating quantized ONNX mixed-
precision models to fully integer TOSA representations preserves classification performance
to a high degree across a variety of model architectures and data modalities. Overall, the
observed differences in accuracy are small and do not exhibit a systematic degradation in the
TOSA models, supporting the viability of the proposed translation approach.

2.1.1 Impact of Model Depth

For the deep convolutional models, the comparison across different network depths shows
that increased depth does not amplify accuracy discrepancies between the ONNX and TOSA
representations. Alcthough the absolute accuracy decreases as the models become deeper, this
trend is consistent across both representations and is therefore attributable to model capacity
and optimization rather than quantization effects.

The close tracking of accuracy between ONNX and TOSA models suggests that quantization
errors introduced during the translation process do not accumulate in a way that significantly
affects final predictions, even in deeper networks. This is a notable result, as deeper archi-

29



2. DISCUSSION

tectures are potentially more susceptible to numerical error propagation. While the output
histograms for the deepest model indicate the presence of larger numerical deviations for a
small subset of outputs as seen in Figures 1.3, 1.5, these deviations rarely influence the argmax
operation that determines the predicted class.

2.1.2 Numerical Differences Versus Classification Qut-
comes

Across all evaluated models, a consistent pattern emerges: numerical differences between
the ONNX and TOSA output vectors do not directly translate into meaningful differences
in classification accuracy. The histogram ana]yses reveal that while output values may differ
sometimes substantia”y, the predicted class often remains unchanged.

This observation highlights an important distinction between numerical equivalence and
functional equivalence. Although the two representations are not numerically identical, they
remain functionally equivalent for the classification task. The confusion matrices further
support this interpretation by showing strong diagonal dominance, indicating a high level
of agreement between predicted classes. When disagreements occur, they frequently involve
both models making incorrect predictions but assigning different incorrect classes, rather
than one model being systematically more accurate than its counterpart

2.1.3 Precision of input data

The experiments show that the translation to a fully integer int8 representation behaves con-
sistently across models operating on different types of input data. Both the Cifarl0 image
classification model and the MAGIC gamma model were converted using the same integer-
only quantization approach, despite their fundamentally different data characteristics.

For the Cifarl0 model, the conversion preserves classification accuracy and yields highly sim-
ilar output values, with most outputs being identical and remaining differences limited to
very small magnitudes. This indicates that the integer scaling parameters accurately capture
the dynamic range of image-based activations.

For the MAGIC gamma telescope model, which operates on continuous-valued input fea-
tures, the conversion results in identical accuracy between the two representations. This
demonstrates that the integer-only execution is not limited to convolutional or image-based
models, but generalizes to models with different input distributions and compurtational struc-
tures.

Overall, these results suggest that the proposed integer conversion method is robust across
data modalities when using int8 weights and activations, supporting its applicability as a
general deployment strategy for integer-only inference.

2.1.4 Key Takeaways

The main conclusions that can be drawn from the experimental results are summarized as
follows:
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2.2 INTEGER SOFTMAX FOR TRANSFORMERS

— The translation from quantized ONNX mixed-precision models to fully integer TOSA
models preserves classification accuracy across all evaluated architectures and datasets,
with observed differences consistently close to zero.

— Increasing network depth does not lead to systematic accuracy degradation in the
TOSA models, indicating that quantization-related numerical errors do not accumu-
late in a way that meaningfully affects final predictions.

— Although numerical differences between ONNX and TOSA output vectors are present,
these differences rarely alter the predicted class, demonstrating functional equivalence
despite the lack of strict numerical equivalence.

— High-accuracy models, such as the Cifarl0 model, exhibit particularly strong robustness
to integer—only execution, with most output values being identical across representa-
tions.

— The identical performance observed on the MAGIC gamma telescope dataset indicates
that the proposed approach generalizes beyond image-based convolutional models to
continuous-valued input data.

— Overall, the results support the feasibility of deploying fully integer TOSA models as a
drop-in replacement for quantized ONNX models in integer-only inference environ-
ments.

2.2 Integer Softmax for Transformers

2.2.1 The DIGmax Approach

The DIGmax (Dynamical Integer-based Global-set-of-LUTs Softmax) approach represents
a significant contribution toward enabling full-integer transformer inference without cal-
ibration. Unlike existing methods that rely on polynomial approximations (computation-
ally expensive) or single global LUTs (limited accuracy), DIGmax uses a precomputed set of
lookup tables that span the expected range of input scales. At runtime, the appropriate table
is selected based on the dynamic range of the input tensor.

The translation invariance property of softmax is central to this approach. Since softmax(x) =
softmax(x + ¢) for any constant ¢, the output depends only on the relative spacing of input
values, not their absolute magnitude. This spacing is captured by the quantization scale fac-
tor, which motivates organizing the LUT set by scale rather than by absolute value range.

2.2.2 Calibration-Free Operation

A crucial advantage of DIGmax is that it requires no calibration dataset. Traditional static
quantization approaches must run representative data through the model to determine ap-
propriate scale factors for each tensor. For large language models with diverse input distribu-
tions, obtaining a truly representative calibration set is challenging and can lead to accuracy
degradation on out-of-distribution inputs.
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DIGmax sidesteps this problem by computing the input scale dynamically at runtime. The
statistical analysis presented in Section ?? provides a principled method for choosing the
maximum expected value G based on the weight distributions initialized during training. By
setting G = 3v/Var(Z), we capture 99.7% of expected values under the assumption that the

attention logits follow a distribution derived from the weight initialization scheme.

2.2.3 Accuracy Analysis

The benchmark results demonstrate that DIGmax achieves accuracy comparable to the QDQ
baseline in both the real domain [0, 1] and the quantized domain [0, 128]. The MSE distri-
butions show substantial overlap between DIGmax Heuristic and QDQ, with DIGmax Best
(oracle table selection) achieving slightly better accuracy than both.

The table selection accuracy analysis reveals that the heuristic selection is off by an average
of 1.81 tables from the optimal choice, with a median difference of 2 tables. Given that the
global table contains N = 256 rows in the test configuration, this represents less than 1%
deviation from optimal selection. The robustness of DIGmax to suboptimal table selection
stems from the gradual variation between adjacent tables, neighboring entries in the global
LUT approximate similar scale ranges.

2.2.4 Memory and Computational Trade-offs

The DIGmax approach introduces a trade-off between memory footprint and approximation
accuracy. With N tables of 256 entries each (assuming 8-bit storage), the total LUT memory
is N X 256 bytes. For N = 256, this amounts to 64 KB, a modest overhead for modern

hardware but potentially significant for extremely resource-constrained devices.
The computational overhead consists of:
1. Finding the row maximum for each softmax row (O(sequence_length) comparisons)
2. Computing the table index via a single fixed-point multiply-shift
3. Table lookup for each element
4. Integer division for normalization (using binary long division)

The binary long division algorithm (Code Snippet ??) deserves particular actention. While
division is typically expensive in integer-only hardware, the algorithm presented computes
2%/d in O(K) bit operations. For K = 16 fractional bits, this is 16 iterations of shift-compare-
subtract, which is feasible for inference latency requirements.

2.2.5 Addressing Research Question 2

The second research question asked: Which conversion methods yidd the best results when transi-
tioning from ONNX quantization schemes to TOSA in terms of accuracy and performance?

Our experiments suggest that different approaches are optimal for different network com-
ponents:
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For linear operators (Conv, GEMM, MatMul): Static quantization with offline-computed
rescale parameters yie]ds excellent accuracy with minimal runtime overhead. The scale fac-
tors can be folded into multiplier-shift pairs at compile time.

For softmax: We still yet have to confirm this officially, but apple-to-apple comparison is
being conducted atm. However we believe the results will be DIGmax since one Global LUT
yie]ded extremely bad results: Dynamic quantization with DIGmax provides the best balance
between accuracy and calibration requirements. The per-row dynamic approach adapts to
varying input distributions without requiring offline calibration.

2.3 Limitations and Threats to Validity

2.3.1 Operator Coverage

The current implementation supports only a subset of ONNX operators: Conv, GEMM,
ReLU, Flatten, and MaxPool. Many production models use additional operators such as batch
normalization (not folded), various activation functions (GELU, SiLU), normalization layers
(LayerNorm, GroupNorm), and attention mechanisms. Extending the pipeline to support
these operators requires additional lowering passes and, in some cases, integer approxima-
tions for transcendental functions.

2.3.2 Model Scale

The evaluated models are relatively small compared to state-of-the-art architectures. The
deepest model (20Conv) contains 60 convolutional layers, while modern networks like ResNet-
152 or transformers with hundreds of attention layers present additional challenges. Error
accumulation effects that were not observed in our experiments might become significant at
larger scales.

2.3.3 Softmax Evaluation Scope

The DIGmax evaluation focuses on the softmax operation in isolation rather than end-to-end
transformer inference. While the benchmark results are promising, the interaction between
softmax quantization errors and subsequent operations (attention-weighted value aggrega-
tion, residual connections, layer normalization) requires further investigation.

2.3.4 Hardware Validation

Some of the experiments were conducted using the TOSA reference model, which provides
bit-exact execution but does not reflect the performance characteristics of actual hardware
implementations. Deployment on physical integer-only accelerators may reveal additional
considerations related to memory bandwidth, cache behavior, and operator fusion opportu-

nities.
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Some of the experiments were conducted using simulations in python of integer-only hard-

ware.

2.4 Practical Implications

2.4.1 Edge Deployment Viability

The results confirm that full-integer deployment pipelines built on MLIR and TOSA are vi-
able for resource-constrained environments where floating-point execution is undesirable or
infeasible. The negligible accuracy degradation observed across diverse model architectures
and data types suggests that edge deployment can be achieved without sacrificing model
quality.

2.4.2 Development Workflow

The pipeline established in this thesis, PyTorch = ONNX — ONNX-MLIR — TOSA, pro-
vides a clear path for practitioners seeking to deploy quantized models. By leveraging existing
tools at each stage, the approach minimizes the implementation burden while maintaining
flexibility for customization.

2.4.3 Transformer Quantization

The DIGmax approach opens new possibilities for transformer quantization on edge devices.
By eliminating the calibration requirement, the approach simplifies deployment and enables
adaptation to diverse input distributions. The memory overhead of the global LUT set is
modest compared to the model weights themselves, making the trade-off favorable for most
deployment scenarios.

2.5 Summary

The experimental resules validate both contributions of this thesis. The CNN translation
pipeline demonstrates that ONNX QDQ models can be converted to full-integer TOSA
models with minimal accuracy loss, answering the first research question affirmatively. The
DIGmax approach provides a practical solution for integer softmax computation without
calibration, contributing to the broader goal of full-integer transformer inference.

The design of the lowering process, especially the factoring of scale parameters and the careful
handling of tensor layouts, is essential to these outcomes. While the current implementation
supports only a subset of operators, the findings indicate that the approach is fundamentally
sound and can likely be extended to more complex architectures and operator sets. The con-
sistency between ONNX and TOSA inference further suggests that full-integer deployment
pipelines are viable for resource-constrained environments where floating-point execution is
undesirable or infeasible.
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